
Hence 
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1 zdz . 
--;::;=::::::;:::;:::::====;:;: = rr (a + b) 1. 

eR ./(z - a)(z - b) 

VI. 2 Evaluation of Definite Integrals 

Exercise VI.2.I. Find the following integrals: 
(a) f~oo x6~1 dx = 2rr /3. 
(b) Show that for a positive integer n ~ 2, 

(Xl 1 rr/n 

Jo 1 +xndx = sinrr/n' 

[Hint: Try the pathfrom 0 to R, then from R to Re2rri / n , then back to 0, or apply 
a general theorem.) 

Solution. (a) Consider the contour shown on the figure, namely a symmetric 
segment on the real line and a semicircle in the upper half plane. 

We have 

1
[_1 dzl <rrR~ JSR 1 + Z6 - R6 

for some constant B valid for all large R. This shows that the integral on the 
semicircle goes to zero a~ R tends to infinity, and by the residue formula 

100 1 1 
-6--dx = 2rr i L residues of --6 in the upper half plane. 

-00 x + 1 1 + z 

The poles of l/(l + Z6) in the upper half plane are at the points eirr /6 , eirr / 2 and 
ei5rr /6 • Moreover, these poles are simple, so we can use the derivative to find the 
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residues. It follows that the desired integral is 

100 1 . e-5i1f /6 e-5i1f/2 e-25i1f/2 
--dx = 2m(-- + -- + ) 

-00 1 +x6 6 6 6 

= ~i ( _ ~ _ ~ _ i _ ~ + ~) = 2; . 
(b) We split the contour integral given in the hint in three parts, L R the segment 
from 0 to R, AR the arc from R to Re21fi /n, and L ~ the segment from Re21fi /n to O. 

The integral on the arc tends to 0 as R becomes large because this integral is 
estimated by the sup norm of f multiplied by the length of the are, and because 
we assume n ~ 2 

11 _1_dzl < R27r ~. 
AR 1 + zn - n Rn 

The only pole of 1/(1 + zn) in the interior of the contour (for large R) is e1fi /n and 
this pole is simple. The derivative shows that the residue is 

~e-(n-I)1fi/n = -1 e1fi /n 
n n 

Parametrizing L ~ by te21fi /n with 0 ~ t ~ R we find that 

1 _l_dz = _e21fi /n 1 _1_dz . 
L'" 1 + zn LR 1 + zn 

Taking the limit as R ~ 00 and using the residue formula we get 

2 '/ 100 1 -1 '/ (1 - e 1f1 n) ---dx = 27ri(-e1fl n), 
o 1 + xn n 

thus 

(e1fi /n - e-1fi /n) 100 1 
--dx =7r/n. 

2i 0 1 +xn 
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By Euler's fonnula we conclude that 

['>0 _l_dx = 7rln 
10 1+xn sin7rln 

Exercise VI.2.2. Find the following integrals: 

(a) J: x::, dx = 7r..ti12. 

(b) Jooo x::, dx = 7r 16. 

Solution. (a) Let f(z) = z2 /(1 + Z4). To use the contour given in the text, i.e., 
a segment on the real line and a semicircle in the upper half plane (see the first 
figure of the preceding exercise) we must show that f decreases rapidly at infinity. 
There exists a constant B such that for all large R we have 

R2 B 
If(z)1 ~ B R4 = R2 whenever Izl = R. 

The integral on the semicircle is estimated by the sup nonn of f multiplied by 
the length of the semicircle. Hence the integral on the semicircle is bounded by 
7r R(B I R2) = 7r B I R, and therefore this integral tends to 0 as R tends to infinity. 
So 

/
00 f (x )dx = 27r i L residues of ~ in the upper half plane. 

-00 1 + z 

The function f(z) has two simple poles in the upper half plane at e rri /4 and e 3rri/4. 

Using the derivative of the denominator and the fact that the numerator is entire, 
we find that the residues are 

(erri/4)2 (e3rri /4)2 
and 

4e3rri /4 4e9rri /4 ' 

respectively. Hence 

/

00 (erri/2 e3rri/2) 
-00 f(x)dx = 27ri 4e3rri/4 + 4erri/4 

= tri (e-rri /4 + e5rri /4) 
2 

= ~i (-2i'7) = 7r~. 
(b) Let f(z) = z2 /(1 + Z6). The function f is even, so 

/
00 f(x)dx = 2 roo f(x)dx, 

-00 10 
and we are reduced to computing the integral of f over the whole real line. Arguing 
like in (a) we see that we can use the same contour, hence 

/

00 2 

f (x )dx = 27r i L residues of ~ in the upper half plane. 
-00 1 + z 
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The poles of f are described in part (a) of Exercise 1. Taking into account that Z2 

is entire we can compute the residues at the poles and obtain 

100 ( e 21Ci / 6 e 21Ci / 2 e lO1Ci / 6 ) 
-00 f(x)dx = 2rri 6e51Ci/6 + 6e51Ci/2 + 6e251Ci/6 

= rri (e-1Ci/2 + e-31Ci / 2 + e-1Ci / 2) 
3 

rri rr 
= 3(-i + i-i) = 3' 

The above observation implies that 

100 rr 
f(x)dx =-, 

o 6 
as was to be shown. 

Exercise VI.2.3. Show that 

--dx = - sin-. 100 x-I 4rr 2rr 

-00 x 5 - 1 5 5 

Solution. Let fez) = (z - 1)/(z5 - O. Then there exists a positive constant B 
such that for aU large R we have 

R2 B 
If(z)1 .:::: B R5 = R3 

whenever Izl = R. The same argument as in Exercise 1 (a) shows that we can use 
.the same contour as this exercise, therefore 

100 x-I '"' z - 1 
-5 --dx = 2rr i ~ residues of -5-- in the upper half plane. 

-00 x-I z - 1 

The simple poles of f in the upper half plane are at the points e 21Ci / 5 and e41Ci / 5, so 
the residues at these points are 

e 21Ci / 5 _ 1 

5(e21Ci / 5)4 

Therefore 

5 
and 

e41Ci / 5 - 1 

5(e41Ci / 5 )4 5 

100 x-I dx = 2rri (e41Ci/5 _ e21Ci/5 + e81Ci/5 _ e 41Ci / 5) 

-00 x 5 - 1 5 

as was to be shown. 

= 2rri (_e21Ci / 5 + e-21Ci / 5 ) 
5 

2rri = 52i sin(2rr/5) 

2rri . 
= - - 2i sm(-2rr/5) 

5 
4rr . 

= 5 sm(2rr /5) 



VI.2 Evaluation of Definite Integrals 97 

Exercise VI.2.4. Evaluate 

1 -Z2 

~dz, 
y z 

where y is: 
(a) the square with vertices 1 + i, -1 + i, -1 - i, 1 - i. 
(b) the ellipse defined by the equation 

x2 y2 
a2 + b2 = 1. 

(The answer is 0 in both cases.) 

Solution. The only singularity of the function e-z2 /z2 is at the origin. The power 
series expansion for the exponential gives 

e-z2 1 Z2 Z4 
-=--1+---

Z2 Z2 2! 3! 

so 0 is a pole of order 2. From the above expression we also see that the residue 
of e-z2 /Z2 at the origin is o. By the residue formula we conclude that the answer 
to (a) and (b) is O. 

Exercise VI.2.S. (a) J:.o S: 1 dx = rr e-a if a > O. 
(b) For any real number a > 0, 

100 cosx -a 
2 2dx =rre fa. 

-00 X +a 

[Hint: This is the real part of the integral obtained by replacing cos x by eix.J 

Solution. (a) This integral belongs to the section on Fourier transforms: We must 
show that f(z) = 1/(1 + Z2) goes to 0 fast enough. There exists a constant K such 
that for all sufficiently large Izl we have 

K 
If(z)1 ::::: IZJ2' 

so the decay assumption is satisfied and we can use the formula given in the text 
(Theorem 2.2) 

100 e~ . 
--2 dx = 2rr i L residues of e lOZ f(z) in the upper half plane. 

-00 1 + x 

The function f has a simple pole at i with residue 1 /2i, so 

100 eiax (eiai ) 
---2dx = 2rri -. = rre-a, 

-00 1 +x 21 

as was to be shown. 
(b) Changing variables x = ay we get 

100 cosx 1 100 cos(aY)d 
--:--....,.dx = - y 

-00 x 2 + a2 a -00 y2 + 1 
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= ~ Re (100 ~dY) 
a -00 y2 + 1 

1 -a = -]'(e , 
a 

as was to be shown. 

Exercise VI.2.6. Let a, b > O. Let T ::: 2b. Show that 

I~ IT eia~ dz _ e-bal S J....(l- e-Ta ) + e-Ta . 
2m -T z - Ib Ta 

Formulate a similar estimate when a < o. 
Solution. Let fez) = eiaz f(z - ib). Consider the rectangle: 

-T-t-.i.T 
I' "Pr 

./ ..tT 
./ 

Tt.i.T 

"' "' 
L ,if 

I' 'RT T ... b 

P T 
, 

-l 

The only pole of f in this rectangle is at ib and the residue is e-ab , so it suffices 
to show that 

_1 .1 { f + 1 f + 1 fl s _1 (l - e-Ta ) + e-Ta , 
2]'( 1 1 Rr Lr rr T a 

where RT denotes the right vertical segment, LT the left vertical segment and rT 
the top vertical segment (all with the orientation given on the picture). We begin 
with 

1 1 1 iT eia(T+it) 
- f= - idt. 
2]'(i Rr 2]'(i 0 T + it - ib 

Putting absolute values we get 

1
_ 1_. { fls-1- (Te-atdt=_I_(l_e-aT). 
2]'( 1 1 Rr 2]'( T 10 2]'( Ta 

The same estimate holds for the left hand side, namely 

1
1 1 I 1 aT -. f s --(l-e- ). 

2]'(1 Lr 2]'( Ta 
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We now estimate the integral on the top segment. With the parametrization t + iT, 
-T :::: t :::: T we get 

1
1 { Ie-aT jT dt 

2rri 1rT I :::: 2rr -T It + iT - ibl 

e-aT 2T 
<-----
- 2rr T-b· 

Since T > 2b, we must have 2T /(T - b) :::: 4 so that 

1
_1 r II < 2e-aT . 
2rri 1rT - rr 

We see now that our estimate is sharper than the one we wanted to prove. 
If a is negative, then a similar argument with a rectangle lying in the lower half 

plane gives 

l_l_.jT eia~ dz _ e-ba I :::: _1_(eaT - 1) + eTa. 
2rrl _TZ-lb Ta 

Exercise VI.2.7. Let c > 0 and a > O. Taking the integral over the vertical line, 
prove that 

1 c+ioo aZ 1 
- -dz=-1

0 

2,,1 L,oo Z i 
ifa < 1, 

ifa = 1, 

ifa > 1. 

/f a = 1, the integral is to be interpreted as the limit 

l c+ ioo lc+iT 
= lim 

c-ioo T ..... oo c-iT 

[Hint: /fa > 1, integrate around a rectangle with comers c-Ai, c+Bi, -X +Bi, 
-X - Ai, and let X ---+- 00. /fa < 1, replace -x by x.J 

Solution. Let b = log a so that 

aZ ebz 
I(z) = - =-. 

z z 
We begin with the case a = 1. Then b = 0 and we must evaluate the integral 

l c+ ioo 1 
-dz. 

c-ioo z 
If X > 0, the segment from c - i X to c + i X is parametrized by c + it where 
-X :::: t :::: X, so that 

l c+ ioo 1 jX i 
-dz = --. dt. 

c-ioo Z -x C + It 
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Now 

j x i jX C jX t 
--dt = i --dt + --dt 

-x c + it -x C2 + t 2 -x C2 + t2 

= 2i arctan(Xjc) 

so letting X ---+ 00 we obtain 

l c+ioo 1 rr 
-dz = 2i - = i rr 

c-ioo Z 2 

and this proves that 

1 l c+ioo aZ 1 - -dz=-. 
2rri c-ioo Z 2 

We now look at the case a > 1 or equivalently b > O. Suppose X > 0 is large, 
and consider the contour: 

-><'+~ )(. 'I\~ 
CT~X. ~ ~ 

"' 
.,. 

L x.V " Rx.. 
... 

0 

..... ' JI' 

\.. '" , r . . 

Here, Tx denotes the horizontal segment on top, Bx the horizontal segment on the 
bottom, Lx the vertical segment on the left and Rx the vertical segment on the 
right and all segments have the orientation given on the picture. If y is the path 
defined by 

y = Rx + Tx + Lx + Bx 

the residue formula gives 

~ 1 aZ dz = Lresidues of fin y. 
2m y z 

The only pole of f is at the origin and since the numerator is equal to 1 at 0 we 
conclude that the right hand side of the above equality is equal to 1. Therefore, 



VI.2 Evaluation of Definite Integrals 101 

it suffices to show that the integral over Tx, Lx and Bx go to 0 as X -+ 00. We 
begin with Tx. This segment is parametrized by t + iX with -X :::: t :::: c so that 

1 aZ i-X eb(t+iX) 
-dz= --dt, 

Tx Z c t + iX 

and therefore 

11 aZ I 1c ebt 
-dz < dt 

Tx Z - -x It + iXI 

1 1c 1 < _ ebtdt = _ [ebc _ e-bX ] 
- X -x Xb ' 

which implies that 

For Lx, we use the parametrization - X + it where - X :::: t :::: X so that 

1 aZ 1x eb(-X+it) 
-dz = i dt. 

Lx Z -x -X + it 

Therefore 

I r a Z dz I < 1x e-bX dt 
iLx Z - -x It + iXI 

< _e_ dt < 2e-bX -bX 1x 
- X -x - , 

and this proves that 

Finally, we must show that the integral over Bx tends to 0 as X -+ 00. To do this, 
we use the parametrization t - i X where -X:::: t :::: c, and estimating as before 
one easily finds that 

and this settles the case a > 1. 
For the case a < 1 or equivalently b < 0 we consider the following contour: 
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I' c+i x. 
Tx. X+.ix.. 

~ 
, 

0 
, 

~ , 'RX 

/ 

c _.L)(. "].,1(. 
X. --i.x. 

If y = Rx + Tx + Lx + Bx, then the residue formula gives 

-21 . r aZ dz = Lresidues of! in y. 
7rl 1y z 

so it suffices to show that the integral over Rx, Tx and Bx tend to 0 as X -+ 00. 

To prove this, we argue as before. With the obvious parametrizations we obtain 

I r aZ dz I ::::: _1 [ebX - ebC ] , 1Tx z bX 

and the right hand side goes to 0 as X -+ 00. Similarly, we obtain that 

ILx :z dzl-+ 0 and ILx azz dzl-+ 0 

as X -+ 0 and this concludes the proof. 

Exercise VI.2.S. (a) Show that for a > 0 we have 

roo cosx 71'(1 + a) 

1-00 (x 2 +a2)2dx = 2a3ea . 

(b) Show that!ora > b > 0 we have 

100 

(x2 + :~~:2 + b2) dx = a2 : b2 (b:b - a:a). 
Solution. The function sin x is odd so f~oo sin x /(x2 + a2)2dx = 0 and therefore 

100 cos x 100 eix 
----::----::---;:-dx = 2 2 2 dx . 

-00 (x 2 + a2 )2 -00 (x + a ) 

Let f(z) = 1/(z2 + a2)2. We want to find the Fourier transform f~oo !(x)eixdx. 
An estimate like in Exercise 5 shows that we can apply Theorem 2.2, and therefore i: !(x)eiXdx = 271'i L residues of !(z)eiZ in the upper half plane. 
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The only pole of f in the upper half plane is at ia. We must now find the residue 
of f at this pole. We write 

1 
fez) = ( . )2( . )2 z-za z+za 

Now we have 

(z + ia)-2 = (z - ia + 2ia)-2 = (2ia)-2 (1 + z ~ ia)-2 
2za 

which after expanding becomes 

(z + ia)-2 = (2ia)-2 (1 _ 2 z ~ ia + ... ) . 
2za 

We also have eiz = e-aei(z-ia) = e-a(1 + i(z - ia) + ... ) so 

- ( . ) iz e z - za .. 
f(z)e = . . 1 - 2-. - + ... (1 + t(z - za) + ... ). 

(z - za)2(2za)2 2za 

Hence 

iz e-a (-1 .) e-a (1 + a) 
reSia f(z)e = (2ia)2 T;; + t = 4a3i . 

By the residue formula we conclude that 

100 f( ) iXd 2' e-a(l + a) e-a(l + a) x e x = lrl = rr ---,.---
-00 4a3i 2a3 

as was to be shown. 
(b) Arguing like in (a) and using the fact that cos is even we find that the desired 
integral is equal to 4 f::' f(x)eixdx where 

1 
fez) = (Z2 + a2)(z2 + b2)' 

We can apply Theorem 2.2. We are only concerned with singularities in the upper 
half plane. In this region f has two simple poles one at ia and the other at ib. 

Computing the derivative of (Z2 + a 2) implies that the residue of f(z)e iZ at ia is 
. ei(ia) 

res . f(z)e IZ - ------::--__=_ 
Z=la - (2ia)((ia)2 + b2) (2ia)(a 2 - b 2)' 

Similarly we find that 

. ei(ib) e-b 

reSz=ib f(z)e IZ = (a 2 + (ib)2)(2ia) = - (2ib)(a 2 _ b2)' 

By Theorem 2.2 we obtain i: f(x)eixdx = 2rri(resz=ia f(z)e iZ + resz=ib f(z)e iZ ) 
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Conclude. 

E . VI 2 9 roo sin2 x d xerclse ... Jo --xr- x = 7r/2. [Hint: Consider the integral of (1 
e2ix )/x2.J 

Solution. Since the integrand is even, the desired integral is equal to 

1100 sin2 x 
- --2-dx . 
2 -00 x 

The trigonometric identity 2 sin2 x = 1 - cos 2x, implies 

Joo sin2 x (100 1 - e 2ix ) 2 --2-dx = Re 2 dx . 
-00 x -00 x 

We have reduced the problem to finding the integral 1:0 f(x)dx where f(z) = 
(1 - e2iZ )/z2. The function f has a unique pole at the origin. We take as a path 

To show that 

lim f f(z)dz = 0 
R-'>oo S(R) 

split the integral and write is as 

f dz f e2iz 
-- -dz 

S(R) Z2 S(R) Z2 • 

The first integral goes to 0 as R tends to infinity because it is bounded by 7r R / R2 , 
namely the sup nonn of l/z2 on S(R) times the length of S(R) . The second integral 
is estimated exactly like on page 196 of Lang's book. By the lemma on this same 
page we obtain 

lim f f(z)dz = -7ri resz=o f(z). 
E-'>O S(E) 

To find the residue, we must use the power series expansion of the exponential 

1 - (1 + 2iz + (2izf /2! + .. -) -2i . 
f(z) = 2 = - + terms of hIgher order. 

z z 
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Hence the residue of I at the origin is - 2i and therefore 

Conclude. 

100 1 - e2ix 
--2-dx = 27r. 

-00 X 

Exercise VI.2.10. J~oo a1o~:2 dx = l' s~na lor a > O. The integral is meant to be 
interpreted as the limit: 

1-a-o la-o 1B 
lim lim + + . 

B-+oo 0-+0 -B -a+o a+o 
Solution. Since the sine function is odd, the integral we must compute is equal to 

i: I(x)dx 
eiZ 

where I(z) = -2--2. 
a - z 

The function I has two simple poles, one at a and the other at -a. Consider the 
following contour: 

-R, 

We must show that 

-~ 

lim f I(z)dz = O. 
R-+oo S(R) 

We argue like on page 196 of Lang's book. We have 

S(R) 

f 11' eiRcosge-Rsin9 . 
I(z)dz = 2 2 2i9 i Re,9 dO, 

S(R) 0 a - R e 

so for all large R we get 

If I(Z)dZI < 11' e-Rsin9 RdO - 2R 11'12 e-Rsin9dO. 
- R2 2 - R2 - a2 0 S(R) 0 - a 
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But if 0 :::: e :::: 1(/2, then sin e :::: 2e /1(, thus 

I [ f(z)dz I:::: 2R r/2 e-2RO/ 7r de = 1( (1 - e-R), 
JS(R) R2 - a2 Jo R2 - a2 

and now it is clear that our limit holds. 
Now we must evaluate the limits 

lim [ f(z)dz and 
€ ..... o Jsa (€) 

lim [ f(z)dz. 
€ ..... o Js_a (€) 

A simple modification of the lemma on page 196 of Lang's book shows that if f 
has a pole at x, then 

Writing f as 

we find that 

Therefore 

lim [ f(z)dz = 1( resz=x f(z). 
€ ..... o Jsx (€) 

e iZ 

f (z) = -(a---z-:-)-(a-+-z-) 

_eia 

resz=a f(z) = ~ and 
e-ia 

resz=-a f(z) = 2a . 

100 (eia e-ia ) 
-00 f(z)dz = 1( ~ + 2a 

a 
E . VI2 11 foo cosx d 7r U h· d· d xerClse •• . -00 eX+rX X = e"/2+e "/2· se t e In lcate contour: 

-R+7ri 7ri R+7ri 

tr----:~---,l 
-R R 

Solution. The sine function is odd, so the desired integral is equal to i: f(x)dx 
eiZ 

where f(z) = . 
eZ + e-Z 

To find the singularities of f we must solve eZ + e-z = O. Multiplying this 
equation by e Z we get e 2z + 1 = O. Letting z = x + iy, we get e2xe2iy = -1. 
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Putting absolute values we find x = 0 and this shows that f has singularities at 
the points i (1f /2 + k1f) where k E Z. 

Consider the contour y(R) = YI (R) + )I2(R) + Y3(R) + Y4(R) as shown on the 
figure 

-'R ...... ~ 

"'t-tR.4 
-p.. 

) 

~(R) 

The only singularity of f in the interior of the contour is at i 1f /2. The derivative 
of eZ + e-z at that point is equal to 2i which is nonzero so f has a simple pole at 
i1f/2 with 

ei(itr /2) e-tr /2 

resz=itr/2 f(z) = ----u- = U-. 
By the residue formula, we get 

1 f(z)dz = 1fe-tr/ 2 . 
y(R) 

We now want show that the integral over )I2(R) and Y4(R) tend to 0 as R tends to 
infinity. We can estimate the integral by 

11 f(Z)dzl :::: 1 If(z)1 d :::: 1f sup I R i eiRe-':R -i I, 
l"2(R) l"2(R) O::;y::;tr e e y + e e Y 

and for large R 

I eiRe-Y I e-Y 1 
eReiy + e-Re-iy :::: e R leiY + e-2Re-iy l :::: eR(1 - e-2R )· 

The last inequality follows from 0 :::: y :::: 1f and the triangle inequality applied to 
the denominator and the fact that R is large. It is now clear that the integral of f 
over )I2(R) tends to 0 as R tends to infinity. A similar argument proves the same 
result for the integral of f over Y4(R). 

Finally, we find the expression of the integral of f over )I3(R). Using the 
parametrization t + 1f for - R :::: t :::: R and being careful about the orientation we 
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get 

So if I denotes the integral we want to evaluate we conclude that 

1+ e-:rr 1= Jre-:rr/2, 

and therefore 
Jr 

1= . 
e:rr/2 + e-:rr/2 

This concludes the exercise. 

E . VI 2 12 roo x sinx d 1 -a if 0 XerClSe •• • JO x2+a2 X = 'iJre I a > . 

Solution. The integral we wish to evaluate has an even integrand so it is equal to 

1100 xsinx 
-2 2 2dx . 

-00 X + a 

The function X cos x is odd so 

100 x sinx (1 00
") 2 2dx =Im f(x)e'Xdx 

-00 x + a -00 

z 
where fez) = 2 2 . 

Z +a 
Clearly, the function f verifies the hypothesis of Theorem 2.2 so we can apply the 
formula i: f(x)eixdx = 2Jri Lresidues of f(z)e iZ in the upper half plane. 

The function f has simple poles at ia and -ia. Since a > 0 we are only concerned 
with the pole at i a which is in the upper half plane. Since 

z 
fez) = ( .)( ')' z-w z+w 

it follows that 

(
. ) -a " la" " e 

res _" f(z)e'Z = - e'(w) = -. 
z-w 2ia 2 

Hence 
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The observations at the beginning of the exercise imply that 

100 x sin x _ ~ -a 
Z zdx - l'(e • 

o x +a 2 

Exercise VI.2.13. J~oo e~:l dx = sinrrrra lor 0 < a < 1. 

Solution. The solution to this exercise is very much like our answer to Exercise 
V1.2.11. Let fez) = e az /(eZ + 1). The function I has poles at il'( + 2kl'( with 
k E Z. Consider the contour y(R) = Yl (R) + yz(R) + Y3(R) + Y4(R) given by 

-'R+~lr.i c(3(R) R+2tr-i. 

"( ... (11.) f 
) : > 

t~(R) 
-R. 0 ~(R) "R 

Taking the derivative of the denominator of I we find that the residue of I at i 1'( 

is e airr / e irr = _eairr so by the residue formula we obtain 

1 I(z)dz = _21'(ieairr . 
y(R) 

We must show that the integrals on the sides yz(R) and Y4(R) tend to 0 as R tends 
to infinity. We estimate the sup norm of Ion yz(R) by 

I eaReiay I eaR 
SUp II(z)1 = SUp R i S -R--· 

ZE)'2(R) ZE)'2(R) e e y + 1 e - 1 

But 0 < a < 1 so we see that the sup norm of Ion yz(R) goes to 0 as R tends 
to infinity, and since yz(R) has length 21'( we conclude that the integral of lover 
yz(R) tends to 0 as R tends to infinity. A similar argument shows that the same 
conclusion holds for the integral of lover Y4(R). 

We must now find an expression for the integral of f over Y3(R). Arguing like 
in Exercise 11 we find that 

1 I(z)dz = _eZrrai 1 I(z)dz. 
n(R) n(~ 

If I denotes the integral we want to compute, we get (letting R -+ (0) 

1- e2:n:ai I = _21'(ieairr 
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so that 

(eJrai _ e-Jrai ) 
-----/=7r 2i . 

We have therefore proved that / = 7r /(sin 7ra). 

Exercise VI.2.14. (a) 1000 (l~!;t dx = 7r 3/8. Use the contour 

(b) 1000 (;f!;j2dx = -7r/4. 

Solution. (a) We first define the following mysterious function: 

(logz - T)2 
f(z) = 1 + Z2 

We take the branch of the logarithm given by deleting the negative imaginary axis 
and taking the angle to be -7r /2 < () < 37r /2. Consider the contour given by 

-"R - S 

~(R,. ) 
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The only singularity of f which is of interest is the simple pole at i. The residue 
of f at that pole is 

(log i - irr /2)2 
2i = O. 

This is one reason which explains the strange constant rr i /2 in the definition of f. 
By the residue fonnula, we conclude that 1, f(z)dz = O. The integral of f onSR 
tends to 0 as R --+ 00 because the length of S R multiplied by the sup nonn on S R 

behaves like R (IO~r)2 which tends to 0 as R tends to infinity. The integral of f on 
Sli behaves like (log 8)28 which tends to 0 as 8 --+ O. 

On the real axis we have 

1 f(x)dx = I-Ii (log Ixl + i~rr/2»2 dx 
y,(R,Ii) -R 1 + x 

and 

1 f(x)dx = lR (log Ixl - i(rr/2»2 dx. 
l'2(R,Ii) Ii 1 + x 2 

Letting R --+ 00 and 8 --+ 0 we see that after cancellations (which explain the 
choice of our f) we get 

1
0 (log Ixli 100 (log Ix/)2 rr21°O dx _ 

-=---::::"':"'--='2:"-dx + 2 dx - - --2 - 0, 
-00 1 + x 0 1 + x 4 -00 1 + x 

hence 

2 {OO (log xi dx = rr21°O ~ = rr3. 
10 1 + x 2 4 -00 1 + x 2 4 

(b) We use the same technique as in (a). Let 

logz - !f 
f(z) = (Z2 + 1)2 . 

We use the same branch of the logarithm and the same contour as in part (a). The 
only singularity of f in the upper half plane is at the point i. Our next step is to 
find the residue of f at this singularity. Since we can write 

logz - !f 
f(z) = (z + i)2(Z _ i)2 

it suffices to find the coefficient of the tenn z - i in the power series expansion of 
(log z - irr /2)/(z + i)2 near i. We simply have 

__ 1_ = 1 = _-_1 (1 _ 2_z _-_i + higher order tenns) , 
(z + i)2 (2i)2 (1 + ZU i )2 4 2i 

and 

(_l)n-l (Z-i)n z-i 
log z - irr /2 = L -. - = -. - + higher order tenns. 

n I I 
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Thus 

The residue fonnula gives 

-1 
reSz=i f(z) = 4i. 

i f(z)dz = 2rri reSz=i f(z) = -2rr . 

An argument similar to the one given in (a) shows that the integrals on the 
semicircles SR and S8 tend to 0 as R -+ 00 and 8 -+ 0 respectively. Therefore 

10 log Ixl + irr/2 roo log Ixl - irr/2 _ -rr 
-00 (x2 + 1)2 dx + 10 (x 2 + 1)2 dx - 2 . 

We obtain 

2 roo log x -rr 
10 (x2 + 1)2 dx = 2' 

as was to be shown. 

Exercise VI.2.IS. (a) Jooo I~x d: = sin1r1ra for 0 < a < 1. 

(b) Jooo 1~:3 d: = 3Sinrnaf3) for 0 < a < 3. 

Solution. Let f(z) = 1/(1 + z). Then If(z)1 ::: C/izi as Izl -+ 00 for some 
constant C and 1!(z)1 -+ 1 as Izl -+ 0, so we can apply Theorem 2.4 which states 
that the integral (a Mellin transfonn) 

roo f(x)xadx 
10 x 

is equal to - ~i~-;: times the sum of the residues of f(z)za-I at the poles of !, 
excluding the residue at O. 

The only pole of f is at -1 and 

resz=-I f(z)za-l = (_I)a-l = e(a-I)log(-I) = e(a-l)i1r. 

Therefore 

roo x a dx _ rre-1ria (a-l)i1r _ rr 
10 1 +x ~ - - sinrra e - sinrra· 

(b) As in part (a), we can apply Theorem 2.4, so all we have to do is compute the 
residues of f(z)za-I where !(z) = 1/(1 + Z3). The poles of f are at e i1r /3, e i1r and 
e 5i1r/3 so the sum of the residues of !(z)za-l excluding the residue at the origin is 

(ei1r/3)a-1 (ei1r)a-l (e5i1r/3)a-1 

3(ei1r/3)2 + 3(ei1r )2 + 3(e5i1r/3)2 . 

We transform the first term in the following way 

(ei1r/3)a-1 ai1r/3 -i1r 
_...."...-:-:--:- = e(a-l)(i1r/3)3e2i1r/3 = e e 
3(ein"/3)2 3 

=---
3 
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Making the same transfonnations to the other tenns, we find that the sum of the 
residues of f(z)za-I excluding the residue at the origin is 

Hence 

= ~1 (eaiJr / 3 +eai:rr +eai5:rr/3) 

_eai:rr 
= -3- (eai(-2):rr/3 + 1 + eai2:rr/3) . 

100 xa dx Jr 
_____ =. (eai(-2):rr/3 + 1 + eai2:rr/3). 

o 1 +x3 x 3slDJra 

We claim that 

eai(-2):rr/3 + 1 + eai2:rr/3 

sin Jra 

1 

sin(Jra/3) 

Using Euler's fonnula 2i sin () = eifJ - e-ifJ to write everything with exponentials 
and cross multiplying proves our claim. 

Exercise VI.2.t6. Let f be a continuous junction, and suppose that the integral 

roo f(x)xa dx 
10 x 

is absolutely convergent. Show that it is equal to the integral 

f: f(et)eat dt. 

Ifwe put g(t) = f(e t ), this shows that the Mellin transform is essentially a Fourier 
transform, up to a change of variable. 

Solution. We change variables et = x. Then dx = etdt and therefore 

Exercise VI.2.t7. J;:rr l+aL~COSfJd() = 1::2 if 0 < a < 1. The answer comes 
out to the negative of that if a > 1. 

Solution. Since this is a trigonometric integral we will apply Theorem 2.3. We 
have 

1 1 1 1 
f(z) = ~ - ---=----~-

IZ 1 + a 2 - 2a G (z + ~)) - i -az2 + (1 + a 2)z - a' 

The roots of the denominator of the second fraction are 
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If 0 < a < 1, the only pole of f in the unit circle is at z I = a and (differentiating 
the denominator of the fraction) we find that the residue is 

1 1 1 
i -2az1 +(1 +a2) = i(l-a2)' 

and therefore 

L f(z)dz = 27ri C(1 ~ a2)) = 1 ~7ra2· 
If a > 1 the only pole of f in the unit circle is at Zl = l/a and the residue is 

1 1 1 

hence 

r f(z)dz = 227r 1 . lc a -
Exercise VI.2.1S. JJ: l+s:n2 odO = Jz. 
Solution. See Exercise 20. 

Exercise VI.2.19. JJ: 3+2~osodO = :Is. 
Solution. In order to apply Theorem 2.3 we must integrate from 0 to 27r. We claim 
that 

1:rr _---:--1_-:- 1 12:rr 1 -=- dO = - dO. 
o 3+2cosO 20 3+2cosO 

To prove this claim, we change variables 0 ~ -0 in the first integral so that 

r 1 dO = r-:rr -1 dO = 10 1 dO. 
10 3+2cosO 10 3+2cos(-0) -Jr 3+2cosO 

Now changing variables 0 ~ 0 + 27r we get 

10 1 dO = 12
:rr 1 dO. 

-Jr 3 + 2 cos 0 Jr 3 + 2 cos 0 

This proves our claim. We must now compute 

r 2:rr 1 dO 
10 3+2cosO 

and we use Theorem 2.3 with the function 
1 1 1 

f(z) = :- ---:--:---~ 
lZ 3 + 2Hz + ~) - i(Z2 + 3z + 1) . 

The zeros of the denominator are 

Zl = 
-3 +.j5 

and Z2 = 
-3 -.j5 

2 2 
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The only pole of f in the unit circle is at ZI and the residue is 

I I 
---:-:-=--, 
i(2zl + 3) i./5 

and therefore 

{21< de I 2rr 

10 3 + 2cose = 2rri 2i./5 = ./5' 
This proves that 

11< 3 + ~~ose = ~. 
Exercise VI.2.20. r1< adO r 21< adO 1< 

JO a2+sin20 = JO 1+2a2-cosO = .Jl+a2· 

Solution. We have 

l-cos2e I 
a 2 + sin2 e = a 2 + 2 = 2 (2a 2 + I - cos 2e) , 

so changing variables cp = 2e we find that 

r ade (21< ade rr 

10 a2 + sin2 e - 10 I + 2a2 - cos e - JI + a 2 . 

To compute this last integral, we use Theorem 2.3 with 

I a 2ai 
f(z) = - - . 

iz I + 2a2 - 0 (z + ±)) Z2 - (2 + 4a2 )z + I 
The roots of the denominator are 

2 + 4a 2 + JI6a2 + 16a4 2 2 21 I f1-2 
ZI= 2 =1+ a + av'l+a~, 

and 

Z2 = I + 2a2 - 2Ial~. 
The only pole of f in the unit circle is at Z2 and the residue of f at this point is 

2ai ai 

2Z2 - (2 + 4a2) -2IaIJI + a2 

and therefore 

( f(z)dz = 2rri ai = .!!..- rr . 
1c -2IaIJI + a2 lal JI + a2 

Conclude. 

. VI 2 21 r1</2 I d Ll 1«2a+l) fi 0 Exercise •• • Jo (a+sin20)2 U = 4(a2+a)3/2 or a > . 

Solution. Using the fact that 

. I 
sm2 e = 2(1 - cos2e) 
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and arguing like at the beginning of Exercise 19, one finds after a few linear changes 
of variables that 

r/2 1 d8 = t·Jr d8 . 
Jo (a + sin2 8)2 Jo (2a + 1 - cos 8)2 

Since we reduced the problem to a trigonometric integral from 0 to 27r we can 
apply Theorem 2.3 with the function. 

1 1 
f(z) = -;- \ \ 2 

IZ {2a + 1 - 2 (Z + z)) 
Z 

=----------------~2· 

i ( -~ + (2a + l)z - n 
The zeros of the denominator are at the points 

Z\ = (2a + 1) - 2./ a 2 + a and Z2 = (2a + 1) + 2./ a 2 + a. 

Since z\ is the only pole of f in the unit circle we must compute the residue of f 
at this point. We write 

z 4z 
f(z) = = , 

i(I/4)(z - Z\)2(Z - Z2)2 i(z - Z\)2(Z - Z2)2 

so that the residue of f is equal to the coefficient of z - z \ in the power series 
expansion of 

4z 
h(z) = ----;:

i(z - Z2)2 

near Z\. To find this coefficient, we first differentiate h and obtain 

h'(z) = - - 2 = - , 4 [1 z] 4 [ -z - Z2 ] 
i (z - Z2)2 (z - Z2)3 i (z - Z2)3 

which we evaluate at z\ to obtain the residue of fat z\ 

4 -4a-2 2a+l 
resz=Z\ f(z) = h'(z\) = i -43(a2 + a)3/2 = 8i (a2 + a)3/2' 

Therefore 

( . 1 2a + 1 7r(2a + 1) 
Jc f(z)dz = 2m 8i (a2 + a)3/2 = 4(a2 + a)3/2' 

Exercise VI.2.22. J;Jr 2-:ino d8 = 27r /.../3. 
Solution. We will apply Theorem 2.3 with the function 

1 1 2 
f(z) = - \ ( \) = 2 . 

iz 2 - -, z - - -z + 4iz + 1 
21 Z 

The roots of the denominator are 

z\ = 2i - i.../3 and Z2 = 2i + i.J3. 
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The only pole of f in the unit circle is at z\ and the residue of f at this point is 

2 I 
----:--- = 
-2z\ + 4i i,.j3· 

Hence 

1 f(z)dz = 2rri . 1", = 2:. 
c ly3 y3 

Exercise VI.2.23. J021f (a+b~osli)2 de = (a2:.';,~)372 for 0 < b < a. 

Solution. We will apply Theorem 2.3 with 

liz 
fez) = -;- 2 = 2 • 

IZ (a + ~ (z + ~)) i (~Z2 + az + ~) 
The roots of the denominator are 

-a + .Ja2 - b2 
z\ = 

b 
and 

-a-Ja2 -b2 
Z2 = 

b 

The assumption that 0 < b < a implies that the only pole of f in the unit circle 
is at Z\. We must now compute the residue of fat Z\. We have 

z 
fez) = b2 ' 

i T(z - Z\)2(Z - Z2)2 

so the residue we are looking for is equal to the coefficient of the term z - z\ in 
the power series expansion of 

4z 
h(z) = . 

ib2(z - Z2)2 

Differentiating h once we find 

h,(z)=~[-z-z2J 
ib2 (z - Z2)3 

which evaluated at z\ gives 

4 [ 2ajb ] a 
ib2 8(Ja2-b2)3jb3 =i(a2 _b2)3/2' 

which is the residue of f at Z\. Thus 

1 a 2rra 
c f(z)dz = 2rri i(a2 _ b2)3/2 = (a2 _ b2)3/2 . 

Exercise VI.2.24. Let n be an even integer. Find 

r21f 
10 (cosetde 

by the method of residues. 
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Solution. We apply Theorem 2.3 with 

1 ( l)n 
f(z) = 2niz z + Z 

The only pole of f is at the origin. To find the residue of f at 0, we must find 
the constant term of (z + ~ r. Since n is even, the constant term is given by the 
binomial coefficient 

( n) n! n! 
nl2 = (nI2)!(n - nI2)! = (nI2)!2' 

and therefore, the residue of f at 0 is 

n! 

Hence 


